Estimates for Rankin–Selberg L-Functions and Quantum Unique Ergodicity
نویسندگان
چکیده
منابع مشابه
Distal Functions and Unique Ergodicity
A. Knapp [5] has shown that the set, D(S), of all distal functions on a group S is a norm closed subalgebra of l°°(S) that contains the constants and is closed under the complex conjugation and left translation by elements of 5. Also it is proved that [7] for any k e N and any lei the function /: Z -> C defined by f(h) = ea" is distal on Z . Now let W be the norm closure of the algebra generate...
متن کاملNote on Quantum Unique Ergodicity
The purpose of this note is to record an observation about quantum unique ergodicity (QUE) which is relevant to the recent construction of H. Donnelly [D] of quasi-modes on nonpositively curved surfaces and to similar examples known as bouncing ball modes [BSS, H] on stadia. It gives a rigorous proof of a localization statement of Heller-O’Connor [HO] for eigenfunctions of the stadium. The rele...
متن کاملQuantum Unique Ergodicity for Parabolic Maps
We study the ergodic properties of quantized ergodic maps of the torus. It is known that these satisfy quantum ergodicity: For almost all eigenstates, the expectation values of quantum observables converge to the classical phase-space average with respect to Liouville measure of the corresponding classical observable. The possible existence of any exceptional subsequences of eigenstates is an i...
متن کاملAdelic Dynamics and Arithmetic Quantum Unique Ergodicity
LetM be a complete Riemannian manifold with finite volume which we initially assume to be compact. Then since M is compact, L(M) is spanned by the eigenfunctions of the Laplacian ∆ on M . Many interesting questions can be asked about these eigenfunctions and their properties, and of these we focus on one, quantum ergodicity, which to the best of my knowledge was first considered by A. I. Šnirel...
متن کاملInvariant Measures and Arithmetic Quantum Unique Ergodicity
We classify measures on the locally homogeneous space Γ\SL(2,R)×L which are invariant and have positive entropy under the diagonal subgroup of SL(2,R) and recurrent under L. This classification can be used to show arithmetic quantum unique ergodicity for compact arithmetic surfaces, and a similar but slightly weaker result for the finite volume case. Other applications are also presented. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2001
ISSN: 0022-1236
DOI: 10.1006/jfan.2001.3783